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3. INTRODUCTION TO STRUCTURAL DYNAMICS

The transient dynamic equilibrium equation for a linear discrete structure (equations of motion):

o . doy (1) d*q (1)
(MK at+[C{d+[K[{ ¢ ={ K9} Tdt it
nxn nx1 m™xn nx1 ~xn rnxl <1 o g dOQ(t) ) d2 dzqz(t)
where: {q} = a{ q(t)} = dt ¢, { c} = F{ o t)} = dt2
[M] = structural mass matrix [C] = structural damping matrix
[K] = structural stiffness matrix dq (1) 2
{g} = nodal displacement vector , {q’} = nodal velocity vector 9G4y dq.(9)
{9"} = nodal acceleration vector dt dt

{F(t)} = applied load vector
U=Zla)[l{d. T=3lallmld
Rayleigh model of damping
[C]=a.[M]+A[K],
a, B -external and internal damping coefficients

Special cases :

{F(t)} = {0} - free vibrations

{F(t)} ={0} [C]=[O] - free undamped vibrationthatural v.)
[M]=[0], {F(t)} = {0} [C]=[0] - linear static problem
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NATURAL VIBRATIONS - modal analysis

[M ]{ q} +[ K]{ CI} = { O} : Second order set of differential equation

General solution{Q(t)} :{ CI}A COSCUt+{ q} 5 Sinwt

{d}, i{d}, - vectors evaluated from the initial conditionsy - natural circular frequency
{0} =-{q} , coswt-w?{ ¢}, sirwt=-w?{q .
-’ [M[{a} +[K]{c} ={0}, [K){a} =&’ [M]{q}
Obtained theeigenvalue problem: ([ K] - wz [ M ]){ q} = { O} .

Trivial solution { C]} = { 0}
Nontrivial solutions det([K] —a)z[M ]) =0

The determinant - polynomial of n-th degree in ®rof «” . The solutions &  are the natural frequencies (eigenvalues). Teesponding
eigenvectors{Q}i are called the natural modes.

They can be scaled (&Q}i is the eigenvector them{ Q}i also satisfies the eigenvalue problem)

Usually the eigenvectors are normalized Kl { Q}j =|ql [ I]{ q P~ 9 o |_qu [M]{ o) P = 9 .

The solution is much more time-consuming than thet®n of a set of linear equations in static gal.

Iterative numerical techniques are used to findithéed number of eigenvalues (natural frequesicigithin the interesting range..
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EIGENVALUES AND EIGENVECTORS IN ALGEBRA

Consider the special form of the linear systenwliich the right-hand side vectgiis a multiple of the solution vectar

AX =\ X
or, written in full,
agqx, + apx, + -+ 4+ a,x, = Ax,
dyXy + dpXy; + -0+ G, = AX,
a1 I+ a;n%, + -+ AunXy = AXp

This is called the standard (or classi@ht)ebraic eigenproblem. The system can be rearranged into the homogeffieans
(A—-Al)x=0.
A nontrivial solution of this equation is possilfi@nd only if the coefficient matriA—1l is singular.
Such a condition can be expressed as the vanishihg determinant : A|-/lI| = 0
When this determinant is expanded, we obtain agba#ic polynomial equation ihof degreen:
PR =A"+a "+ + < 4¢,=0
This is known as theharacteristic equation of the matrixA. The left-hand side is called tbkaracteristic polynomial. We known
that a polynomial of degraehasn (generally complex) rootg, 1, . . ., 4n. Thesen numbers are called tleegenvalues, eigenroots
or characteristic values of matrix A.
With each eigenvalué there is an associated veckpthat satisfies AXi = i X;.
This xi is called areigenvector or characteristic vector. An eigenvector is unique only up to a scale factaf x; is an eigenvector
S0 ispx; wheref is an arbitrary nonzero number. Eigenvectors aenoformalizedso that e.g. their Euclidean length is 1.
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Example — free vibrations of the cantilever beam- mode shapes and natural frequencies
V4

y
z\
I
-— E=2*10°MPa
Y < v=0.3 +kg
P=8*10 —.
% | m?
5 5
FE model 60

mode shape 1¢;=219.1 modiapge 2, ©v,=333.3
bending vibrations in xz plane orstonal vibrations Bending and torsional nabons

mode shape 4w4=1353.73 motage 7, ®1=3704.3 , bending
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Mass matrix of a finite element

1, . ,
Defines kinetic energy of an elementl, =§LCIJe[ TTL{ C}e.

Displacement vector within the element finite element

{u} :[N]{q}e' of a domair2e

Velocity vector
dQe

S{=[N)(d,

Kinetic energy of the padQ, of the finite element),
aT =Sl o) §=2[ Ul Y @ ey
aT. =L o[NP N §, @,
T.=5lal [N [N @.{3,

General formula for the consistent mass matrix of a finite e ement

T.=2lal[n (3, .= [N [N @,

Therelation describes so named consistent mass matrix (determined using the same approach asfor the stiffness matrix).
To simplify the calculations it can be used also so called lumped mass matrix (diagonal)
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FEM relations for rod element

G u()

A

The mass matrix for an axial member

\4

Tezio'm(“)2 :%E(u)szdf_

2

Velocity of the particles along the element

¢- local coordinate

01

Evaluating the integrals we get
_1 %
=Haal (]

[m]e=£{N} pLN] &,

ALl2]1

m]= 5521131

The diagonal (lumped) form of the matrix

pgle 0
! 2 |
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Example
710, @ ®
G G Y5
7 L L
(el © — ©
- L

E,A
Free vibrations of the rod fixed at one end — FEavith 2 elements

The analytical solution

@:1.5708} E,

. 2i-1 1[E NV p
o === |— =
2 1\p @:4.7124%—,

Yo,

FE solution using model with 2 finite elements

Free vibrations equation

The stiffness matrix and the mass matrix for bd¢ments;
EAl 1 | -1 A 121
[K], = [m), =2 L=
. |-1] 1} © 6 |1|2) 2
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1(-1] 0 2| 1| 0[][q,
T:—A—l 2 —1—a;2p:'e 1] 4] 1 |{g,}=
10 |-1] 1 ol 1| 2/||q, |
q =0
| -1 1 6 | 1] 2|/]|q .
_ 2 PAl, JEA_ plg
Substituting A=w 6 /I _6E W
we have

Ihe roots of the characteristic equation of thatr:
A, =0.108z, 1, =1.3204 and consequently

det{z—M —(1+/1)}:0
—(1+1) @A-2})

@ =0.8057- | = 16114 |5
.\ o 'V p
w2:2.81483 E 56003 |E
.\ o 'V p
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Comparing with the exact solution
we have the relative errors of the natural freqeen2.6% and 19.5%.

Mode shapes (eigenvectors

Assumingd; =A andq, =0.
|a],=[0, 0.70nn, A,
|a],=|0, -0.702r, A,
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The mass matrix of the simple beam element

Kinetic energy of the segmenf of the beam W()
— V2
dTe - dm;ﬂ W / 2 (without the rotational movement) |_ 5 N |
01 02 i 03 Oa
Velocity of the segment | |
ql\ < >
: q e
W(€) =[N (€), No(€) N(8), N(E) Jy o
\q‘4)
N, - shape functions of the beam element
Kinetic energy of the element :
[ [ 2
H 1%, .
T,=[dT.==[(W) p Adf
0 2%
156 | 22, 54[- 18 |(q,) 156| 22, | 54| - 18
T _EL s . . JDOAIe 4|e2 13e _:Bg <q2} . [m] :pAle 4|e2 13e _32
e " 5 @ &% % G 420/ sym. 156| - 22 || g, The mass matrix e 420 156 | —22,
a7 |l 4

The same result may be derived using thegeneraula [m]e = “ N]T,O[ N] CQe,

Qe
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Example - Natural frequencies of the cantilever éam .

The exact analytical solution

Z

One element FE model

q]_ q3
N N
(
A
o=7.62—
|
w2:34.81%2 /i T

1=3,4...,
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FEM - the eigenvalue problem

6|3 |-6| 3 156 22| 54 - 13)(q,
2El| 291 -3 |17 | pAl 4%| 1B | -B? J% | )
E 6 |-3 420 156 - 22 ||| q,
21% 4° |Jla]) (O

¢ =0,0,=0

2E1| 6 | -3 | ofpAl| 156 | - 2P ||[q;]| _
1° | -3 | 2° 420 | -22 | 4% |]|q,

of[6 173 [16[-22])_
3 127|” 22| # |70

_ PAI°
Using the new parameter 7! — S40E|

we obtain the characteristic equation

1400% - 204 + 3= (

and the roots

A, =1.485TN(F
A, =1.4423.

1 [El
@ =3533% [EL w, =348 |—
1<\ pA 1<\ pA

Thus



FEM Il - Lecture 3 13 Page 13 of 15

Eigenvectors

6-1561 |—$+ 2PA | (q,| _ (O
-3+224 | 2°- 4822 ||q,] |0
The vectors|q| =| &, q,], and| q|,=| &.q,|, corresponding tay i w, (A i 4,).

_—(6-1561) _73+220 g
YTz 1 O B Toam

Assumingg, =A we obtain for the first mode, :1.38|é, and for the second modg= 7,62#.

lq],= {0,0,A ,1.3#?J |
Lal, ={0,0,A,7.62%J

IN FEM MODAL ANALYSIS: Good accuraof the results (frequencies, mode shapes) eveawfigh meshing.
Usually lower natural freqoees are determined with better accuracy
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Summary- types of dynamic analyses in FEM:

Transient Dynamic

All dynamic analysis types in the ANSYS program laased on the following general equation of motion

for a finite element system:

[MKu} + [CK o} + [KNu} = {F()}

where:

[M] mass matrix , [C]damping matrix , [Kliffness matrix

{G} nodal acceleration vector, i nodal velocity vector, {u} nodal displacemergator

{F} load vector, (t)time

Transient dynamic analysis (also known as timeshysanalysis) is used to determine the dynamicamesg of a structure subjected to time-dependent
loads. There are three basic methods of a trandyeratmic solution: full transient dynamic methaeéduced method, and mode superposition..

The full transient dynamic is the most generahds full nonlinear capability and may include plast, creep, large deflection, large strain, sires

stiffening, and nonlinear elements.

Modal

Modal analysis is useful for any application in ahihe natural frequencies of a structure aretef@st

For example, a machine component should be designptbduce natural frequencies that will prevdr tomponent from vibrating at one of its
fundamental modes under operating conditions.

Modal analysis is used to extract the natural feegies and mode shapes of a structure. It is irapbas a first step to any dynamic analysis because
knowledge of the structure’s fundamental mode shagel frequencies can help characterize its dynagsigonse. Some transient and harmonic
solution procedures require the results of a madalysis.

For undamped cases (which are most common for naoddysis) the damping term, [GIJ, is ignored and the equation reduces to:
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(K] — o’ [M]}{u} = 0
wherew® (the square of natural frequencies) representsigeavalues, and {u} represents the eigenvecfdrs mode shapes, which do not change

with time).

Harmonic Response
Harmonic response analysis is used to determinstéaely-state response of a linear structure bous@dally varying forcing function. This analysis
type is useful for studying the effects of load dibions that vary harmonically with time, such hegse experienced by the housings, mountings, and

foundations of rotating machinery.

Response Spectrum

A response spectrum analysis can be used to deterthie response of a structure to shock loadingditons.

This analysis type uses the results of a modalaisahlong with a known spectrum to calculate maximdisplacements and stresses that occur in the
structure at each of its natural frequencies. AcBlpresponse spectrum application is seismic amglywhich is used to study the effects of

earthquakes on structures such as piping systemsrs, and bridges.

Random Vibration
Random vibration analysis is a type of spectrumyaisused to study the response of a structurartdom excitations, such as those generated by jet

or rocket engines.



