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3.  INTRODUCTION TO STRUCTURAL DYNAMICS 

The transient dynamic equilibrium equation for a linear discrete structure (equations of motion): 

 [ ]{ } [ ]{ } [ ]{ } { }
1 1 1 1

( )
n n n nn n n n n n

M q C q K q F t
× × × ×× × ×

+ + =
�� �

,  

where:  

[M] = structural mass matrix     [C] = structural damping matrix  
[K] = structural stiffness matrix  
{q} = nodal displacement vector , {q’} = nodal velocity vector 
{q’’} = nodal acceleration vector  

{F(t)} = applied load vector   

 [ ]{ }1

2
U q K q=    .  

Rayleigh model of damping 

 [ ] [ ] [ ]t tC M Kα β= + ,  

tα   tβ   - external and internal damping coefficients 

Special cases : 

{F(t)} = {0}  -  free vibrations 

{F(t)} = {0}    [C]=[0]  - free undamped vibrations (natural v.) 

[M]=[0], {F(t)} = {0}    [C]=[0]   - linear static problem  
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NATURAL  VIBRATIONS  - modal analys is 

 [ ]{ } [ ]{ } { }0M q K q+ =ɺɺ .         Second order set of differential equations  

 General solution   { } { } { }( ) cos sin
A B

q t q t q tω ω= +   

{ }A
q  i { }B

q  - vectors evaluated from the initial conditions,    ω - natural circular frequency 

 { } { } { } { }2 2 2cos sin
A B

q q t q t qω ω ω ω ω= − − = −ɺɺ .  

 [ ]{ } [ ]{ } { }2 0M q K qω− + = ,                   [ ]{ } [ ]{ }2K q M qω=  

Obtained the eigenvalue problem :  [ ] [ ]( ){ } { }2 0K M qω− = . 

Trivial solution                               { } { }0q =  

Nontrivial solutions        [ ] [ ]( )2det 0K Mω− = . 

The determinant - polynomial of n-th degree in terms of 2ω  . The solutions  iω    are the natural frequencies (eigenvalues). The corresponding 

eigenvectors   { }i
q   are called  the natural modes.  

They can be scaled    (if  { }i
q   is the eigenvector  then  α{ }i

q   also satisfies the eigenvalue problem) 

Usually the eigenvectors  are normalized     ,        { } [ ]{ } ijj ji i
q q q I q δ= =              or                [ ]{ } ijji

q M q δ=   . 

The solution is much more time-consuming than the solution of a set of linear equations in static analysis.  

Iterative numerical techniques are used to find the limited number of eigenvalues  (natural frequencies) within the interesting range..  
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EIGENVALUES AND EIGENVECTORS IN ALGEBRA 

Consider the special form of the linear system  in which the right-hand side vector y is a multiple of the solution vector x: 

Ax = λ x 

or, written in full, 

 

This is called the standard (or classical) algebraic eigenproblem. The system can be rearranged into the homogeneous form 

(A − λI ) x = 0. 

A nontrivial solution of this equation is possible if and only if the coefficient matrix A−λI is singular. 

Such a condition can be expressed as the vanishing of the determinant :   |A − λI | =  0 

When this determinant is expanded, we obtain an algebraic polynomial equation in λ of degree n: 

P(λ) = λn + α 1λ
n-1 +・ ・ ・+αn = 0 

This is known as the characteristic equation of the matrix A. The left-hand side is called the characteristic polynomial. We known 

that a polynomial of degree n has n (generally complex) roots λ1, λ2, . . ., λn. These n numbers are called the eigenvalues, eigenroots 

or characteristic values of matrix A. 

With each eigenvalue λi there is an associated vector xi that satisfies               Ax i = λi xi. 

This xi is called an eigenvector or characteristic vector. An eigenvector is unique only up to a scale factor:    if xi is an eigenvector, 

so is βxi where β is an arbitrary nonzero number. Eigenvectors are often normalized  so that  e.g. their Euclidean length is 1.  
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Example – free vibrations of the cantilever beam   -    mode shapes and natural frequencies 
 

 FE model   
 

        
                 mode shape 1 ,   ω1=219.1                                       mode shape  2 ,   ω2=333.3                    mode shape  3 ,   ω3=769.5 , 
 bending vibrations in xz plane                   torsional vibrations       Bending and torsional vibrations 

                  
               mode shape 4     ω4=1353.73                                     mode shape  7 ,   ω1=3704.3 , bending  
 

y 
z 

x 

y

z

E=2*10  MPa5

=0.3
=8*10  

kg
m

3

3



FEM II - Lecture 3        Page 5 of 15 
________________________________________________________________________________________________________________________ 

5 

Mass matrix of  a finite element    
 

Defines  kinetic energy of an element  [ ] { }1

2e ee e
T q m q=   ɺ ɺ .  

Displacement vector within the element  

 { } [ ]{ }e
u N q= , 

Velocity vector  

 { } [ ]{ }e

d
u N q

dt
= ɺ .  

Kinetic energy of  the part edΩ  of  the finite element eΩ  

 { } { }1 1

2 2e edT u dm u u u dρ= = Ω      ɺ ɺ ɺ ɺ ,              ρ  - density 

 [ ] [ ]{ }1

2
T

e eee
dT q N N q dρ= ⋅ Ω  ɺ ɺ .  

 
[ ] [ ] { }1

2
e

T

e e ee
T q N N d qρ

Ω

= Ω   ∫ɺ ɺ
.  

General formula for the consistent mass matrix of a finite element 

 [ ] { }1

2e ee e
T q m q=   ɺ ɺ                                    [ ] [ ] [ ]

e

T

ee
m N N dρ

Ω

= Ω∫ ,  

 .  
The relation describes so named consistent mass matrix (determined using the same approach as for the  stiffness matrix). 

To simplify the calculations it can be used also so called lumped mass matrix (diagonal)  

 finite element  
of a domain Ωe   

dΩe 

qi 
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FEM relations for rod element 

 

 

 

 

 

 

 

The mass matrix for an axial member 

                           ( )
2

2

0 0

( ) 1

2 2

e el l

e

dm u
T u Adρ ξ= =∫ ∫

ɺ
ɺ .  

Velocity of the particles along the element  

                                ( ) ( ) ( ) 1
1 2

2

,
q

u N N
q

ξ ξ ξ  
=     

 

ɺ
ɺ

ɺ
,  

                                      1 21 , ,
e e

N N
l l

ξ ξ= − =   

ξ- local coordinate 

  

Evaluating the integrals we get 

[ ] 1
1 2

2

1
,

2e e

q
T q q m

q

 
=     

 

ɺ
ɺ ɺ

ɺ
 

[ ] { }
e

ee
m N N dρ

Ω

= Ω  ∫  

[ ] 2 1

1 26
e

e

Al
m

ρ= . 

 
The diagonal (lumped) form of the matrix  

[ ]
0

2

0
2

e

e
e

Al

m
Al

ρ

ρ

 
 

=  
 
  

. 

le 

ξ dm 

q1 u(ξ) q1 
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Example  

q1 2q 3q

ee

21 3

E,A  
Free vibrations of the rod fixed at one end – FE model with 2 elements 

 

The analytical solution 

: 

2 1 1

2
s
i

i E

l
ω π

ρ
−= .                                 

1

2

1
1.5708 ,

1
4.7124 ,

s

s

E

l

E

l

ω
ρ

ω
ρ

=

=
 

 
FE solution using model  with 2 finite elements    

  
Free vibrations equation 

 [ ] [ ]( ){ } { }2 0K M qω− = , 

The stiffness matrix and the mass matrix for both elements; 

[ ] 1 1

1 1e
e

EA
k

l

−
=

− ,          [ ] 2 1

1 26
e

e

Al
m

ρ=
,       2e

l
l = . 
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1
2

2

3

1 1 0 2 1 0 0

1 2 1 1 4 1 0
6

0 1 1 0 1 2 0

e

e

q
AlEA

q
l

q

ρω
 −    
    − − − =    

    −     

. 

 

1 0q =   

 

22

3

2 1 4 1 0

1 1 1 2 06
e

e

qAlEA

ql

ρω
 −    

− =     −    
. 

Substituting                

2
2 2

6 6
ee

e

lAl EA

l E

ρρλ ω ω= =  

  we have 

 
2 4 (1 )

det 0
(1 ) (1 2 )

λ λ
λ λ

− − +  = − + − 
. 

 
Ihe  roots of the characteristic equation of the  matrix:  

1 0.1082λ = , 2 1.3204λ =           and consequently 

 

1

2

1 1
0.8057 1.6114 ,

1 1
2.8148 5.6293 .

e

e

E E

l l

E E

l l

ω
ρ ρ

ω
ρ ρ

= =

= =
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Comparing with the exact solution 
  

we have the relative errors of the natural frequencies 2.6%    and 19.5%. 
 
Mode shapes  (eigenvectors 
 E,A

10.7071

E=1.61141

1

=5.62932

E1

 

Assuming 3q = ∆   and 1 0q = . 

 1
0, 0.707 ,q = ∆ ∆       , 

2
0, 0.707 ,q = − ∆ ∆       . 
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The mass matrix of  the simple  beam element 
 
Kinetic energy of the segment dξ  of the beam  

2( ) 2edT dm w= ⋅ ɺ    (without the rotational movement)       

Velocity of the segment 

( ) ( ) ( ) ( ) ( )
1

2
1 2 3 4

3

4

, , ,

q

q
w N N N N

q

q

ξ ξ ξ ξ ξ

 
 
 =     
 
  

ɺ

ɺ
ɺ

ɺ

ɺ

, 

iN  - shape functions of the beam element 

Kinetic  energy of the  element : 

 ( )
2

0 0

1

2

e el l

e eT dT w Adρ ξ= =∫ ∫ ɺ .  

1

2 2
2

1 2 3 4
3

2
4

156 22 54 13

4 13 31
, , ,

sym. 156 222 420

4

e e

e e ee
e

e

e

ql l

ql l lAl
T q q q q

ql

ql

ρ
−  

 −  = ⋅     −  
  

ɺ

ɺ
ɺ ɺ ɺ ɺ

ɺ

ɺ

     The mass matrix        [ ]
2 2

2

156 22 54 13

4 13 3

156 22420

4

e e

e e ee
e

e

e

l l

l l lAl
m

l

l

ρ
−
−

=
−  

The same result  may be derived using thegeneral formula     [ ] [ ] [ ]
e

T

ee
m N N dρ

Ω

= Ω∫ , 

 

 

le 

ξ dm 

q1 

w(ξ) 

q3 q2 q4 
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Example  -  Natural frequencies of the cantilever beam .   

One element FE model 

q4

q1
q2

q3

=1.38
=3.5331

1
2

EI
A

=7.62

A
EI=34.812

1
2

 
The exact analytical solution 

 

( )

1 2

2 2

2

2

1
3.5156 ,

1
22.0346 ,

2 1 1
, 3,4...,

2

s

s

s
i

EI

l A

EI

l A

i EI
i

l A

ω
ρ

ω
ρ

π
ω

ρ

= ⋅

= ⋅

− 
= ⋅ = 
 
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FEM -  the  eigenvalue problem  

1

2 2 2 2
22

3
3

2 2
4

6 3 6 3 156 22 54 13 0

2 3 4 13 3 02

6 3 156 22 0420

2 4 0

ql l l l

ql l l l l lEI Al

ql ll

ql l

ρω

 − −    
    − −     − =    − −     

        

.  

1 0q = , 2 0q =   

 

2
3

2 23
4

6 3 156 22 02
3 2 22 4 0420

ql lEI Al

ql l l ll

ω ρ − −    
− =      − −    

 

 2 2

6 3 156 22
det 0

3 2 22 4

l l

l l l l
λ

 − −    
− =     − −    

,  

 

Using  the new parameter  

4
2

840

Al

EI

ρλ ω= ⋅ .  

we obtain the characteristic equation  

 
2140 204 3 0λ λ− + = ,  

and  the roots 

 

2
1

2

1.4857 10 ,

1.4423.

λ
λ

−= ⋅
=  

Thus 

 

1 2

1
3,533 ,

EI

l A
ω

ρ
=

                                

2 2

1
34,81 .

EI

l A
ω

ρ
=
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Eigenvectors 

 
3

2 2

4

6 156 3 22 0
3 22 2 4 0

l l q

l l l l q

λ λ
λ λ

− − +     
=    − + −    

,  

The vectors  3 41 1
,q q q=        and 3 42 2

,q q q=         corresponding to 1ω  i 2ω  ( 1λ  i 2λ ).  

( )
( )

3
4

6 156

3 22

q
q

l

λ
λ

− −
= ⋅

− +     or   
3

4

3 22

2 4

q
q

l

λ
λ

− += ⋅
− + . 

Assuming ( 3q = ∆   we obtain for the first mode 4 1.38q
l

∆= ,  and for the second mode 4 7,62q
l

∆= ⋅ . 

 

1

2

0,0, ,1.37 ,

0,0, ,7.62 .

q
l

q
l

∆ = ∆     

∆ = ∆     

 

 

IN FEM MODAL ANALYSIS:                Good accuracy of the results (frequencies, mode shapes)  even for rough meshing. 

                       Usually lower natural frequencies are determined with better accuracy 
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Summary- types of dynamic analyses in FEM: 
 

Transient Dynamic 

All dynamic analysis types in the ANSYS program are based on the following general equation of motion 

for a finite element system: 

[M]{ü} + [C]{ ů} + [K]{u} = {F(t)} 

where: 

[M] mass matrix  ,    [C] damping matrix   ,    [K] stiffness matrix 

{ü} nodal acceleration vector,   {ů} nodal velocity vector,   {u} nodal displacement vector 

{F} load vector ,  (t) time 

Transient dynamic analysis (also known as time-history analysis) is used to determine the dynamic response of a structure subjected to time-dependent 

loads. There are three basic methods of a transient dynamic solution: full transient dynamic method,  reduced method, and mode superposition.. 

The full transient dynamic is the most general. It has full nonlinear capability and may include plasticity, creep, large deflection, large strain, stress 

stiffening, and nonlinear elements. 

 

Modal 

Modal analysis is useful for any application in which the natural frequencies of a structure are of interest 

For example, a machine component should be designed to produce natural frequencies that will prevent the component from vibrating at one of its 

fundamental modes under operating conditions. 

Modal analysis is used to extract the natural frequencies and mode shapes of a structure. It is important as a first step to any dynamic analysis because 

knowledge of the structure’s fundamental mode shapes and frequencies can help characterize its dynamic response. Some transient and harmonic 

solution procedures require the results of a modal analysis. 

For undamped cases (which are most common for modal analysis) the damping term, [C]{ů}, is ignored and the equation reduces to: 
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([K] – ω2[M]){u} = 0 

where ω2  (the square of natural frequencies) represents the eigenvalues, and {u}  represents the eigenvectors  (the mode shapes, which do not change 

with time). 

 

Harmonic Response 

Harmonic response analysis is used to determine the steady-state response of a linear structure to a sinusoidally varying forcing function. This analysis 

type is useful for studying the effects of load conditions that vary harmonically with time, such as those experienced by the housings, mountings, and 

foundations of rotating machinery. 

 

Response Spectrum 

A response spectrum analysis can be used to determine  the response of a structure to shock loading conditions. 

This analysis type uses the results of a modal analysis along with a known spectrum to calculate maximum displacements and stresses that occur in the 

structure at each of its natural frequencies. A typical response spectrum application is seismic analysis, which is used to study the effects of 

earthquakes on structures such as piping systems, towers, and bridges. 

 

Random Vibration 

Random vibration analysis is a type of spectrum analysis used to study the response of a structure to random excitations, such as those generated by jet 

or rocket engines. 

 


